

Treatement by DFT-D2 of great molecular systems

Eric Duverger Equipe Minano FEMTO-ST / Dpt MN2S-UFC

Great HPC challenge First results Nanospider

E. Duverger- Minano

Size of systems currently observe today ?

Network TBB/SiB: 1,3,5-tri(4'-bromophenyl)benzene

 $120x120 \text{ nm}^2$, Vs = 2.5 V, It = 0.034 nA, RT

- Nanoporous network
 Large Islands (> 800x800 nm²), stable until 400 K

Network TBB/SiB: 1,3,5-tri(4'-bromophenyl)benzene

120x120 nm², Vs = 2.5 V, It = 0.034 nA, RT

Lattice commensurate with SiBPrimitive cell: six protrusions

What we observe experimentally ?

4

4

Molecule isolated: PTCDI/SiC(0001) 3x3

ISMO Orsay ANR MOLSIC

What we observe experimentally?

What DFT-code to solve Kohn-Sham equation ?

Accuracy ?

Peter Larsson, PhD Computational Scientist

National Supercomputer Centre in Linköping Sweden

Equation of state error relative to Wien2k

540 Atoms 64 nodes / 4Go/nodes 20x20x70 Ang

STM / bSKAN image

STM Image

LDOS Image with smoothing

LDOS Image without smoothing

STM image simulated with bSKAN

E. Duverger- Minano

STM / bSKAN image

Molecule isolated : PTCDI/SiC(0001) 3X3

ISMO Orsay

Molecule isolated: PTCDI/SiC(0001) 3X3

ISMO Orsay

Results Obtained by Bskan

In standard

TBB network

540 Atoms

PTCDI on SiC(0001)3x3

Structural properties

Comparison Experimental STM image And simulated

ISMO (Orsay)

Electronic properties HOMO S₂

680 Atoms

Application : Molecule isolated on surface Molecule Arachnoïd : nanospider

• Objective:

• Understand experimental observations

Solution

- Full DFT-D2 simulation with the surface
- Simulate STM images

Molecule Arachnoïd : nanospider

 $C_{152}H_{158}N_{12}$

J. Zeitouny, A. Llanes-Pallas, D. Bonifazi (Universita di Trieste)

A. Belbakra, A. Barbieri, N. Armaroli Istituto per la Sintesi Organica e la Fotoreattivita del CNR, Bologne

Chem. Commun., 2011, 47, 451–453

HYPERCHEM results

This journal is (c) The Royal Society of Chemistry 2010

HYPERCHEM results

Isomer	Bond length (Å)			Bond angle (°)		Dihedral angle (°)
	C_I - N_I	$N_1 = N_2$	$N_2 - C_2$	C_1 - N_1 = N_2	$N_1 = N_2 - C_2$	$C_1 - N_1 = N_2 - C_2$
tttt	1.4469	1.2321	1.4461	119.97	120.03	179.94
cttt	1.4522	1.2166	1.4522	126.92	126.83	0.15
tctt	1.4465	1.2318	1.4457	119.87	119.83	179.48
cctt	1.4520	1.2168	1.4517	127.16	127.09	0.23
ctct	1.4523	1.2170	1.4521	126.93	126.80	0.14
cttc	1.4524	1.2167	1.4524	126.87	126.90	0.01
ccct	1.4526	1.2168	1.4522	127.05	126.96	0.10
cctc	1.4522	1.2164	1.4518	127.08	126.85	0.18
сссс	1.4523	1.2167	1.4520	127.04	127.02	0.39

S. Melinte (Institute of Condensed Matter and Nanosciences - Université Catholique de Louvain)

o-st

Molecule Arachnoïd : nanospider

STM image onto HOPG at 77K

What we observe ?

CILIS

We can simulate so great system ?

E. Duverger- Minano

HPC « Grands Challenges »

Cluster HPC : Mésocentre Université de Franche Comté (300 cpu)

Simulations challenge HPC rules :

As fast as possible... Full-DFT Using vdw-D2 Good precision (Normal)

70x70x50 Ang

First test simulation on Au surface

Test #0 806 atoms

64 nodes $--\rightarrow$ 6 Go/node

60x60x30 Ang

NWRITE = 2 IALGO = 38 #ionic relaxation

IBRION=2 NSW=2

Temps Elapsed time (sec): 165351.328 s (46 h) i.e. : 2939 h monoprocessor !

Simulations challenge HPC rules :

Verified

Application::

Great system PAW with 2122 and 3922 atoms

Test

Time : 356070.114 for 2 ionic relaxation steps== 6330 h mono

Test

Time : 535. ks (148 h) for 5ionic relaxation steps == 9514 h mono

120 nodes $-- \rightarrow$ 5 Go/node

Time : 342 ks (95 h) for 5 ionic relaxation steps== 11421 h mono

300 nodes $-- \rightarrow$ 2 Go/node

Time : 174 ks (48h) for 5 ionic relaxation steps== 14542 h mono

LDOS on HOPG

Laplacian

Nanospider arms in interaction with the HOPG substrate

Energy and bias voltage interesting?

CINIS

N=N PDOS

POST- treatment with Bskan

V=-1V

Resolution 120x120 I=0.1 nA

E. Duverger- Minano

$$V=-1V$$

Resolution 120x120 I=0.05 nA

V=-1V Resolution 120x120 I=0.07 nA

Displacement of one arm

V=-1 V Resolution 120x120 I=0.05 nA

Conclusion

Possibility to simulate great system in PAW At minima 300 c.p.u in standard !

Thank you for your attention

