Modelling heterogeneous catalysis: what challenge for first principle calculations?

Philippe Sautet

Institute of Chemistry University of Lyon

Making chemical reactions easier with catalysis

Lowering the energy barrier, finding an easy path

Ecoefficient chemistry with catalysis ... and simulations

Chemical plant of the 21st century

- •Softs conditions
- total selectivityNo waste

Design of efficient catalysts Understanding mechanisms at the molecular scale Molecular simulation is a key approach

Reaction pathways at surfaces

H_2 on Cu(100): hybrid approach

ONIOM type embedding

Potential energy surface

CCSD(T)/PBE

_ : : =

MRCI+Q/PBE

H₂ on Cu(100)

- Hybrid QM/QM' scheme
- Cluster energies need to be corrected
- Much broader barrier with explicitly correlated calculations
- Activation energy with MRCI+Q / PBE in excellent agreement with best estimate of experimental value
- DFT/PBE is (only) 0.18 eV away

F. Göltl, C. Houriez, M. Guitou, G. Chambaud and P. Sautet J. Phys. Chem. C. 118, 5374-5382 (2014)

Pt particles on γ-alumina

Particle size 0.6 - 1.1 nm

A. Jael et al, J. Catal. 272 (2010) 275

 $Pt_{10} - Pt_{20}$

Supported particles: open questions

- Influence of size
- Shape, various sites
- Influence of support Electronic transfer
- Specific chemisorption properties
- Catalytic reactivity

Nano-particle of Pt on Alumina

Theoretical Methods

- Catalyst: nanoparticle deposited on extended support
- Density functional theory GGA: Perdew-Wang 91 or PBE
- Structural exploration with MD
- Combination with thermodynamics

Pt_{13} particles on the γ -Al₂O₃ support

C-.H. Hu, C. Chizallet, ..., P. Sautet, H. Toulhoat, P. Raybaud, J. Catal. 274 (2010) 99

C-H. Hu, C. Chizallet, C. Mager-Maury, M. Corral-Valero, P. Sautet, H. Toulhoat and P. Raybaud, **Journal of Catalysis** 274, 99-110 (2010)

C-H. Hu, C. Chizallet, C. Mager-Maury, M. Corral-Valero, P. Sautet, H. Toulhoat and P. Raybaud, **Journal of Catalysis** 274, 99-110 (2010)

Realistic
RelevantModeling catalysis underOperando conditions

Conditions: T, P, rate, flow, liquid

Insight

Model: catalyst nature and geometry: slab, supported cluster Kinetic model, KMC lattice Reactor model

T, P : structure of catalyst in situ (Ab initio atomistic thermodynamics) Relation with experimental characterisation

Pt₁₃ on γ-Al₂O₃ under a pressure of H₂

Number of H atoms as a function of (P, T)?

$Pt_{13} + 6 H on \gamma - Al_2O_3 (100)$

Pt₁₃ and alumina frozen

C. Mager-Maury, C. Chizallet, P. Sautet, P. Raybaud ChemCatChem 3 (2011) 200

Hydrogen adsorption: $Pt_{13}/(100) \gamma - Al_2O_3$

Strong structural deformation of the Pt₁₃ cluster Weakening of the metal support interaction

 $\Rightarrow Change of the morphology under reductive environment$ $\Rightarrow Cuboctahedron is stabilized at high <math>p(H_2)$

C. Mager-Maury, C. Chizallet, P. Sautet, P. Raybaud ChemCatChem 3 (2011) 200

Hydrogen adsorption: structural reconstruction

Gas phase molecular dynamic at n(H)=24

From BP to CUB transformation

C. Mager-Maury, C. Chizallet, P. Sautet, P. Raybaud ChemCatChem 3 (2011) 200

Effect of Hydrogen: structural reconstruction

Influence of H₂ on the structural properties of Pt₁₃/ γ -Al₂O₃-(100)

Phase diagram of Pt_{13} - $H_n/(100)$ Al_2O_3 as a function of T and P

Porting VASP to GPU

- First step
 - FFTW -> CUFFT
 - BLAS -> CUBLAS
- Second step: minimizing data transfer time
 - By computing in parallel with CPU
 - By porting functions called between GPU calls

Porting VASP to GPU

- First step
 - FFTW -> CUFFT
 - BLAS -> CUBLAS
- Second step: minimizing data transfer time
 - By computing in parallel with CPU
 - By porting functions called between GPU calls
- Third step: specific optimizations
 - EDDAV
 - EDDIAG and RMMDIIS
 - POTLOK, ORTHCH and CHARGE
 - \Rightarrow Take home: Fill the GPU as much as possible
 - using "streams"

Hacene, M.; Anciaux-Sedrakian, A.; Rozanska, X.; Klahr, D.; Guignon T.; Fleurat-Lessard, P. J. Comput. Chem. (2012)

Some results

Some results

Conclusion/Perspectives

- On penultimate generation of GPUs (Fermi):
 - No loss in scalability
 - Acceleration between 5.7 and 8.0
- Project with G. Kresse and Nvidia (Leader P. Fleurat-Lessard)
 - Merging our code with GPU exact exchange (M. Hutchinson, M. Widom)
 - Going to VASP 5.3, CUDA 5. to use fully the latest GPUs (K20)
 - Porting post-HF: MP2 and RPA

Hacene, M.; Anciaux-Sedrakian, A.; Rozanska, X.; Klahr, D.; Guignon T.; Fleurat-Lessard, P. J. Comput. Chem. (2012)

Lyon: F. Delbecq, C. Michel, D. Loffreda, M.L. Bocquet, P. Fleurat-Lessard, D. Torres, F. Cinquini, X. Rozanska, J. Zaffran, F. Auneau, C. Mager-Maury, R. Wischert, M. Iachella, F. Calle Valero, F. Göltl
<u>IFPEN</u>: P. Raybaud, C. Chizallet, M. Digne
<u>Marne-La-Vallée</u>: G. Chambaud, M. Guitou

